«Красота в квадрате»: о Бурбаки, теории множеств и математических доказательствах
12+
  вернуться Время чтения: >15 минут   |   Комментариев: 3
Сохранить

«Красота в квадрате»: о Бурбаки, теории множеств и математических доказательствах

Алекс Беллос, талантливый математик, прекрасный рассказчик и обладатель редкого чувства юмора, написал вкусную книгу о царице наук, её регентах и приключениях.

В предисловии к книге «Красота в квадрате» автор сравнивает математические теоремы с хорошими шутками:

Подобно шуткам с очень смешной кульминацией, самые красивые теоремы проливают свет на нечто совершенно неожиданное. Они раскрывают новую идею, перспективу. Хорошая шутка вызывает смех. Математика приводит в благоговейный трепет. Именно из-за этого элемента неожиданности я влюбился в математику с малых лет. Она — единственный предмет, систематически подвергающий сомнению те выводы, к которым я когда-то пришел.

Эта книга для всех — и тех, кто уже любит математику, но хочет освежить чувства, и тех, кто совсем мало с ней знаком. Даже по названию глав становится понятно, с каким искренним восхищением перед красотой своей области наук автор делится знаниями с читателем: «Длинный хвост закона», «Профессор Калькулус», «Позитивная сила негативного мышления», «Соседи по клетке»... И содержание глав не разочаровывает — каждая из них посвящена отдельной математической концепции, будь то число Эйлера, отрицательные числа или факториалы, и всё это — с той тонкостью и простотой изложения, которая может сравниться со знакомыми каждому русскоязычному читателю книгами великого советского популяризатора науки Якова Перельмана.

Публикуем отрывок из главы этой замечательной книги-путешествия по временам и странам, которая поможет взглянуть по-другому и на математику, и на жизнь — как на умное развлечение. В этой главе вы узнаете о математике, которого не существовало, о том, как математически доказываются физически невозможные вещи и о том, как в средней школе изучали математические явления из нынешнего университетского курса.

Числа всегда были для человека развлечением не в меньшей степени, чем математическим инструментом.

Назвние етой главы содержит три ошбки

Иллюстрации и комиксы: Саймон Линдо, The Surreal MacCoy

В 1879 году немецкий математик Готлоб Фреге опубликовал свой труд Begriffsschrift («Исчисление понятий»), в котором представил тщательно проработанную, имеющую собственные обозначения систему исчисления, позволяющую определить истинность и ложность утверждений. Это было рождение математической логики — использования математических рассуждений для анализа других математических рассуждений.

Фреге хотел дать четкий ответ на вопрос «Что такое число?». Для решения этой задачи он позаимствовал у своего современника Георга Кантора концепцию множества.

В математике часто бывает так, что на первый взгляд простое слово означает нечто сложное. Но только не в случае с множеством.

Множество — это всего лишь совокупность объектов, обладающих одним и тем же свойством. Множеством может быть ящик яблок, пелотон (лидирующая группа) велосипедистов или звездная галактика.

Фреге разработал систему, в которой числа определяются как множества, аксиомы записываются с использованием его системы исчисления понятий, а истинность арифметических законов может быть доказана. Он планировал свести арифметику к системе не допускающих двойного толкования логических операций, в основу которой положены исходные предположения, лишенные внутренних противоречий, — например «отрицание отрицания утверждения А означает утверждение А». Работа с такими концепциями, как числа и сложение, не вызывает никаких трудностей, поэтому вы можете подумать, что задача Фреге была не особо сложной. Но на самом деле она потребовала огромных умственных усилий. В отличие от всех своих предшественников, использовавших числа и арифметические операции в качестве кирпичей для строительства здания математики, Фреге сделал подкоп непосредственно под её фундамент.

Готлоб Фреге опубликовал свою теорию в книге The Basic Laws of Arithmetic («Основные законы арифметики»), первый том которой вышел в 1893 году. Однако, когда второй том уже находился в типографии, Фреге узнал весьма неприятную новость. Профессор философии Кембриджского университета Бертран Рассел прислал ему письмо, в котором указывал на одно противоречие. Поскольку задача сведения арифметики к логике состояла в создании системы, полностью лишенной противоречий, найти хотя бы одно несоответствие было равносильно катастрофе. Фреге быстро написал к книге дополнение: «Вряд ли учёный может столкнуться с чем-либо более нежелательным, чем разрушение основ в тот момент, когда работа уже завершена». С тех пор слово «нежелательный», которое использовал тогда Фреге, называют величайшим преуменьшением в истории математики.

Рассел открыл проклятие самореференции (самоотносимости).

Уроборос — классический символ самоотносимости.

Источник: Википедия

Ниже приведены некоторые из моих любимых утверждений, ссылающихся на самих себя.

  • предложение должно начинаться с большой буквы.
  • В вопросе «быть или не быть» скомбинированы два предложения.
  • В этом предложении !!! преждевременно поставлен знак препинания

Однако самое древнее самоотносимое предложение приписывают критянину Эпимениду, который сказал: «Все критяне лжецы». Эпименид не только ссылается сам на себя, но и сам себе противоречит. Если он говорит правду, значит, он лжёт, а если лжёт, тогда говорит правду.

Высказывание Эпименида (которое назвали «парадоксом лжеца») получило множество новых интерпретаций.

Дайте ответ «да» или «нет» на такой вопрос: «Будет ли следующее слово, которое вы скажете, словом “нет”?»

Спасение от Рассела

Бертран Рассел понял, что парадокс самореференции нанесет серьезный удар по проекту Фреге и, возможно, даже погубит его. Преимущество использования множеств в качестве основы арифметики состоит в том, что эту концепцию легко понять: множество — это просто совокупность объектов.

Однако Рассел изобрел такое множество:

Множество всех множеств, которые не содержат себя в качестве своего элемента.

Большинство множеств не содержат себя в качестве своего элемента. Множество туфель не является туфлей. Но некоторые множества всё же являются исключениями. Например, множество концепций — это тоже концепция. А теперь посмотрим на множество Рассела. Содержит ли оно себя? Если предположить, что да, мы придем к выводу, что не содержит, а если предположить, что нет, то мы сделаем вывод, что содержит! Это множество имеет противоречие.

Женщина-брадобрей бреет солдата.

Источник: Википедия

Рассел провел аналогию с брадобреем одной деревни, на стене дома которого висела табличка: «Я брею всякого, кто сам не бреется». Кто же бреет брадобрея? Если он сам бреется, значит, он не побреет себя, а если он сам не бреется, значит, он себя побреет. Мы имеем бесконечный цикл рассуждений, противоречащих друг другу.

Парадокс Рассела демонстрирует, что множества в том виде, как их представлял себе Фреге, нельзя использовать в качестве прочной основы для арифметики. Самореференция со свойственной ей внутренней противоречивостью способна испортить всю систему.

Однако, вместо того чтобы отбросить проект Фреге как ошибочный, Рассел стал его величайшим сторонником. Мечта о том, чтобы поставить математику на надежную логическую основу, была слишком заманчивой, чтобы от неё отказываться. На протяжении следующих десяти лет Рассел вместе с Альфредом Нортом Уайтхедом работал над усовершенствованием этой системы. Рассел и Уайтхед согласились с предположением Фреге о том, что множество может стать подходящей основой для чисел.

Но, чтобы избавиться от парадоксов самореференции, они создали строгую иерархию множеств. На её первом уровне находятся объекты, такие как книги или кошки. На втором — множества объектов первого уровня, такие как книги на моей полке или кошки на моей улице. На третьем — множества объектов второго уровня, такие как полки с книгами по математике или лондонские кошки, сгруппированные по улицам.

Парадокс Рассела не может возникнуть, поскольку то или иное множество может быть только членом множества верхнего уровня, а значит, не может содержать само себя.

Рассел и Уайтхед ввели систему обозначений, определения и аксиомы, чрезвычайно строго и тщательно сформулированные. Стремление ученых к простоте и понятности разъяснений привело к написанию одного из самых сложных и неудобочитаемых текстов за всю историю математики.

Только на 379-й странице авторы смогли доказать, что 1 + 1 = 2.

Когда они предложили опубликовать книгу Principia Mathematica («Принципы математики»), издатель отказался это делать, поскольку не смог найти читателей, способных её понять.

Написание этой книги потребовало таких огромных умственных усилий, что Рассел больше никогда ничего не писал по математике или логике.

Польский специалист в области логики Альфред Тарский предложил иерархию языка (во многом напоминающую иерархию множеств Рассела), которая позволяет решить парадокс лжеца. В соответствии с ней существует язык уровня 1 и метаязык уровня 2 для описания утверждений на языке уровня 1, а также метаязык уровня 3 для описания утверждений на языке уровня 2 и т. д. Истинность или ложность утверждений можно описывать только на метаязыке следующего уровня, поэтому утверждение не может приписывать истинность или ложность самому себе. Как объяснил однажды Рассел, если бы Эпименид заявил: «Я говорю неправду уровня n», это действительно была бы ложь, но ложь уровня n + 1.

Комедианты используют метаязык так же, как и логики.

Если шутка не удалась, всегда можно выйти из ситуации с юмором, отпустив шутку по поводу неудавшейся шутки.

Написание этой книги потребовало таких огромных умственных усилий, что Рассел больше никогда ничего не писал по математике или логике.

Источник: flickr

Книга Principia Mathematica так и остается непрочитанной. Тем не менее предпринятая в ней попытка создать свободную от парадоксов аксиоматическую основу арифметики была с энтузиазмом подхвачена другими учеными.

Аксиоматическая теория множеств считается величайшим интеллектуальным достижением начала XX столетия, приведшим к появлению замечательных работ в области математики, логики и философии. Стандартная система аксиом получила название ZFC (сокр. от имен математиков Эрнста Цермело (Ernst Zermelo) и Авраама Френкеля (Abraham Fraenkel) с аксиомой выбора.

Аксиома выбора гласит, что при наличии бесконечного количества множеств, каждое из которых содержит не менее одного элемента, можно создать новое множество, включающее по одному элементу из каждого множества. На первый взгляд эта аксиома кажется вполне справедливой, хотя на самом деле она крайне противоречива. Одна из самых горячих дискуссий в теории множеств касалась именно того, стоит ли включать эту аксиому в систему, потому что из-за этого начнут происходить весьма странные вещи.

Стефан Банах, польский математик, который доказал теорему о бутерброде с ветчиной в Шотландском кафе, а также Альфред Тарский, специалист в области логики, предложивший расселовскую иерархию языка, доказали, что если считать аксиому выбора истинной, то истинной будет и следующая теорема:

Шар можно разделить на конечное количество фрагментов, из которых можно собрать две идентичные копии исходного шара.

Эта теорема более известна как «парадокс Банаха — Тарского». Слово «парадокс» используется здесь потому, что на первый взгляд теорема противоречит законам физики, хотя в её доказательстве нет логических противоречий.

В физическом смысле собрать два шара из фрагментов одного невозможно, поскольку эти фрагменты представляют собой не цельную структуру, а совокупность бесконечного количества точек. Тем не менее теорема поражает воображение. Из неё следует, что любой шар можно разделить на части и составить из них любой другой объект, а значит, из горошины можно сделать солнце. (Несмотря на столь невероятные выводы, сейчас большинство математиков принимают аксиому выбора.)

В физическом смысле собрать два шара из фрагментов одного невозможно, поскольку эти фрагменты представляют собой не цельную структуру, а совокупность бесконечного количества точек.

Источник: Википедия

Если суть шутки состоит в неожиданных выводах, то парадокс Банаха — Тарского — самая смешная теорема в математике.

Про математическую мафию и теорию множеств в школах

В конце 1970-х, когда мне было около восьми лет, мы перешли на уроках математики от чисел к множествам. Я хорошо помню, как это происходило. Овал с несколькими точками олицетворял собой одно множество, а второй овал с несколькими точками — другое множество. Нам следовало соединить точки одного множества с точками другого, что показывало, в каком множестве больше точек. Я так и не понял, в чем смысл этих упражнений, и мне кажется, учителя тоже не понимали. Примерно через год на уроках перестали говорить о множествах, и я снова встретился с ними уже на втором курсе университета. Если вы учились в школе в 60-х, 70-х или 80-х годах XX века, вполне вероятно, что вас тоже кратко знакомили с теорией множеств.

Присутствие этой дисциплины в учебной программе связано с именем Николя Бурбаки, самого плодовитого математика ХХ столетия. В 1939 году Бурбаки опубликовал свою первую книгу из масштабной серии под названием Éléments de Mathématique («Начала математики»).

В прошлом считалось, что каждый раздел математики зависит от интуитивных знаний в этой области, на которых основаны концепции и истины. Однако в наши дни, как известно, можно, логически говоря, вывести практически всю человеческую математику из одного источника — теории множеств.

Из книги Éléments de Mathématique («Начала математики»).

 

Название этой серии содержало отсылку к Евклиду. Подобно тому как труд Евклида «Начала» формализовал математические знания древних греков в рамках системы аксиом, основанной на свойствах точек и линий, «Начала математики» Бурбаки формализовали современные математические знания в рамках аксиоматической системы, построенной на свойствах множеств. Выбор слова mathématique (в единственном числе, в отличие от английского mathematics) подчеркивал убежденность Бурбаки в единстве этой области знаний. Серия «Начала математики» состояла из десятков книг общим объемом около 7000 страниц, причем не только по теории множеств, но и по таким дисциплинам, как алгебра, математический анализ и топология. Кроме того, Бурбаки была свойственна одна отличительная особенность, которая делала его уникальным среди современников.

Такого человека не существовало.

Во время одной из регулярных встреч в сельской местности несколько членов группы отправились к местному озеру и, раздевшись донага, прыгали в воду с криками «Бурбаки!».

Источник: registryofpseudonyms.com

В начале 30-х годов ХХ века несколько молодых французских математиков пришли к выводу, что университетские учебники устарели, и решили вместе написать новые. Они взяли для своей группы псевдоним Николя Бурбаки, по имени Шарля Дени Бурбаки — французского генерала, который в 1862 году отказался от греческого престола, а после унизительного поражения во Франко-прусской войне пытался застрелиться, но промахнулся. Ученые, вошедшие в состав этой группы, заявили о том, что Николя Бурбаки родом из Полдавии — страны, которая упоминается в книге о приключениях Тинтина The Blue Lotus. Группа приняла кодекс секретности и ввела возрастное ограничение 50 лет. Подобно польским математикам, собиравшимся в Шотландском кафе во Львове примерно в тот же период, входившие в группу Бурбаки ученые получали удовольствие, смешивая веселье и науку. Во время одной из регулярных встреч в сельской местности несколько членов группы отправились к местному озеру и, раздевшись донага, прыгали в воду с криками «Бурбаки!».

Однако подход Бурбаки к математике был совершенно серьезным. Группа разработала метод написания книг, согласно которому на создание одной книги требовалось несколько лет. После долгих дискуссий по поводу содержания каждого тома кто-то из членов группы составлял черновой вариант текста книги. На следующем собрании текст вычитывался буквально построчно, причем каждую строку должны были одобрить все члены группы. Стиль изложения материала тоже был уникальным. Цель всей серии книг состояла в том, чтобы вывести все из исходных принципов, не прибегая к каким бы то ни было физическим или геометрическим интуитивным данным. Иллюстрации не использовались, поскольку члены группы считали, что они могут вводить в заблуждение.

Строгость для математика — то же самое, что мораль для человека.

— Андре Вейльодин из основателей группы Бурбаки

 

В книгах серии не было аналогий, отступлений, опущений, рисунков или упражнений для читателей. Требование об аксиоматической чистоте было настолько жестким, что в первой книге понадобилось две сотни страниц на определение числа 1, да и то в сокращенной форме. (В книге говорится, что на представление числа 1 в расширенной форме понадобилось бы много тысяч символов. В 1999 году британский специалист по теории множеств А. Р. Д. Матиас заявил, что на самом деле метод Бурбаки требует 4 523 659 424 929 символов и 1 179 618 517 981 связей между ними). У серии книг «Начала математики» была хорошо продуманная структура. Каждая книга могла содержать ссылки только на материал предыдущих книг и не должна была ссылаться на книги других авторов, что позволяло построить огромную логическую систему на основании лишь одной теории множеств. Хотя члены группы были очень молоды, все они уже добились значительных успехов в математике и самостоятельно опубликовали ряд работ.

У серии книг «Начала математики» была хорошо продуманная структура.

Источник: Википедия

Андре Вейль, брат философа и общественного деятеля Симоны Вейль, был, пожалуй, самым талантливым членом группы. В 1939 году, когда вышла первая книга серии «Начала математики», разразилась война, и Вейль уехал в Финляндию. Полиция произвела обыск в его квартире в Хельсинки и нашла там письмо, написанное по-русски (в котором шла речь исключительно о математике), и стопку визитных карточек, принадлежащих Николя Бурбаки, члену Королевской академии наук Полдавии. После этого Вейль был депортирован по обвинению в шпионаже. По возвращении во Францию его посадили в тюрьму за то, что он не явился для прохождения службы в армии. Но Вейлю понравилось сидеть в тюрьме.

Моя математическая работа продвигается лучше, чем в самых смелых мечтах, что меня немного беспокоит. Если я могу так хорошо трудиться только в тюрьме, не придется ли мне устраивать так, чтобы каждый год попадать сюда на два-три месяца?

Из писем Вейля жене.

 

Вторая книга серии «Начала математики» вышла в свет в 1940 году, а третья — в 1942-м. После перерыва по причине войны в конце десятилетия было опубликовано еще несколько томов. Поскольку прежние члены группы достигли возрастного предела, в состав группы были включены новые члены.

К 1950-м годам книги Бурбаки заняли доминирующие позиции в университетской математике во Франции и сохраняли за собой этот статус на протяжении следующих двух десятилетий.

Эта математическая «секта» начала напоминать мафию, поскольку её действующие и бывшие члены (в том числе ряд самых блестящих французских математиков) занимали высшие должности в университетах.

После перевода книг Бурбаки на английский язык они оказали существенное влияние и на англоязычный мир.

К 1950-м годам книги Бурбаки заняли доминирующие позиции в университетской математике во Франции и сохраняли за собой этот статус на протяжении следующих двух десятилетий.

Источник: Википедия

Это может быть интересно:

Плач школьников по ЕГЭ

Лучшее время для группы Бурбаки наступило в период эскалации холодной войны. Правительства стран Запада осознали, что им необходимо полностью изменить систему преподавания естественно-научных дисциплин, для того чтобы не отставать от Советского Союза, только что запустившего в космос первый спутник. Идеология бурбакизма, гласившая, что абстрактные формальные системы важнее интуиции и решения задач, просочилась из университетов в школы. Политики и представители системы образования решили, что ответом на красную угрозу станет включение теории множеств в учебную программу. Преподавание математики было реорганизовано, в результате чего поколение школьников 1960-х и 1970-х годов изучало «новую математику» в лице теории множеств.

Со временем влияние Бурбаки в университетских аудиториях и школьных классах ослабло. Например, такие области исследований, как фракталы, полностью зависят от компьютеров и визуального отображения, поэтому пристрастие Бурбаки к структуре устарело. За последние десятилетия математика развивалась благодаря взаимодействию с другими науками, а не за счёт самоизоляции от них.

В итоге школьникам больше не преподают теорию множеств.

Теория множеств — это один из подходов к построению основы для математики. Другой подход находится сейчас в процессе формирования и подразумевает использование компьютеров. Система для проверки доказательств — это элемент программного обеспечения, проверяющий правильность логических выводов, имеющихся в доказательстве. Хотелось бы верить, что когда-нибудь компьютеры смогут доказать любое математическое утверждение. Если вы захотите убедиться в том, что теорема верна, вам будет достаточно просто нажать кнопку.


Как компьютеры доказывают теоремы

Первой крупной теоремой, доказанной с помощью компьютера, стала теорема о четырехцветной карте, или теорема о четырех красках.

Источник: Википедия

Первой крупной теоремой, доказанной с помощью компьютера, стала теорема о четырехцветной карте, или теорема о четырех красках. Мы с вами уже удостоверились, что любой машинальный рисунок может быть двухцветным, другими словами, что мы можем заштриховать его фрагменты так, чтобы две смежные области всегда были разных цветов.

В 1852 году проживающий в Лондоне выходец из Южной Африки Френсис Гатри раскрашивал карту графств Англии. Он обнаружил, что для раскраски карты таким образом, чтобы соседние графства имели разные цвета, достаточно четырех красок. Эксперименты показали, что четырех цветов хватает и для того, чтобы раскрасить так любую карту. Однако больше столетия никто не мог это доказать, пока в 1976 году Кеннет Аппел и Вольфганг Хакен из Иллинойского университета не сделали это, воспользовавшись суперкомпьютером для проверки всех вероятных конфигураций карт.

Математики отреагировали неоднозначно. В принципе должна существовать возможность проверить каждую строку доказательства. Но компьютер выполнил слишком большой объем вычислений, для того чтобы можно было их все проверить, а это противоречило эталону доказательства теорем, использовавшемуся со времен Евклида. Однако помимо сугубо философских возражений против такого метода доказательства теорем существовали и другие претензии практического плана. В программах всегда есть ошибки. Разве могли Аппел и Хакен быть полностью уверены в том, что в их программе их нет? Нет, не могли.

На самом деле в их доказательстве до сих пор находят новые компьютерные ошибки, хотя все обнаруженные ошибки были исправлены. В 1995 году группа исследователей Принстонского университета составила усовершенствованное компьютерное доказательство теоремы о четырехцветной карте.

А в 2004 году Джордж Гонтье из исследовательской лаборатории компании Microsoft в Кембридже (Англия) проверил его с помощью специальной программы, определяющей корректность доказательств, хотя для этого ему пришлось перевести все концепции на специальный язык программирования, который понимала эта программа. Но тогда возникает следующий вопрос: разве можно быть уверенным в том, что такая программа-помощник не содержит ошибок? Нет, полной уверенности в этом нет, однако ее уровень все же выше, чем в случае исходных доказательств, поскольку эта программа была многократно протестирована при выполнении многих других задач.

В настоящее время доказательство теоремы о четырех красках — одно из наиболее тщательно проверенных в математике.

После первоначального сопротивления автоматизированным доказательствам теорем со временем большинство математиков все же приняли их. Некоторые даже мечтают о том, что однажды все теоремы будут переведены на универсальный компьютерный язык для проверки доказательств, что позволит создать гигантскую формализованную систему, содержащую все доказуемые математические знания, в которой каждое утверждение строго выводится из совокупности базовых строк компьютерного кода. Когда это произойдет, мы все должны, раздевшись донага, прыгнуть в озеро с криками «Бурбаки!».

По материалам:

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

статьи по теме

Можно ли получить удовольствие от х?

Better Explained: Как развить математическую интуицию

Нескучная математика: обзор увлекательных ресурсов