Better Explained: Как понять ноль в нулевой степени?

В школе нас учат, что степень — это многократное умножение. Это прекрасно, но становится совсем непонятным, когда мы встречаем 31,5 или 00

Время чтения: 8 минут
Better Explained: Как понять ноль в нулевой степени?

Как мы можем повторить ноль нулевое количество раз и получить единицу? Всё дело в том, что наш подход к степени числа как к многократному умножению неверен. Нам нужно сменить парадигму. Давайте посмотрим, как мы привыкли воспринимать арифметические действия, и что они на самом деле из себя представляют.

Источник: pixabay.com

Сложение

Как мы привыкли думать: это повторяющийся счёт

Как на самом деле: перемещение

Умножение

Как мы привыкли думать: это многократное сложение

Как на самом деле: масштабирование

Степень

Как мы привыкли думать: многократное умножение

Как на самом деле: рост с течением времени

Смотрим на арифметику как на преобразование

Отойдём на шаг назад. Как мы изучаем арифметику? Нас учат, что числа — это некое количество единиц; сложение — это прибавление одного количества единиц к другому количеству единиц (3+4 = 7), а умножение — это многократное сложение (2*3 = 2+2+2 = 6).

Многократное сложение прекрасно работает с круглыми числами, но что вы скажете про сложение чисел вроде -1 или 2²?

Очевидно, что эта модель восприятия неполноценна. Числа — это не просто единицы чего-то; гораздо лучше представлять их как некие точки с определённым положением на линии. Положение может быть отрицательным (-1), либо между другими числами (2²), либо в другом измерении (i).

Таким образом арифметика предстаёт перед нами как способ преобразовывать число. Сложение становится перемещением (+3 — это перемещение на 3 единицы вправо); умножение становится масштабированием (*3 — это увеличить число в три раза).

А что же такое тогда степень числа?

Познакомьтесь с Экпандотроном™

Это Экспандотрон 3000. Он выглядит как достаточно потрёпанная микроволновка, но вместо подогрева пищи она занимается ростом чисел. Просто положите число внутрь и проделайте несколько простых операций.

  • Начните с 1
  • Установите желаемый показатель «Роста» за одну секунду (2х, 3х, 10,3х и т.д.)
  • Установите желаемый показатель «Времени» в секундах
  • Нажмите кнопку START

Вуаля! После звукового сигнала достаём наше новенькое готовое число. Например, мы хотим изменить 1 на 9. Что нам нужно сделать?

  • Поместите 1 в Экспандотрон
  • Установите «Рост» на 3х, а «Время» на 2 секунды
  • Нажмите кнопку START

Что мы видим? Мы видим, как число начинает преобразовываться: 1; 1,1; 1,2... По окончании первой секунды оно уже выглядит как 3 и продолжает меняться: 3,1; 3,5; 4,0; 6,0; 7,5... И по окончании второй секунды оно превратилось в 9.

В математическом представлении Экспандотрон (или показательная функция) делает для нас следующее:

или

Например, 32 = 9/1. Основанием является то количество раз, в которое нам нужно вырастить число (х3), а степенью — количество времени (2). Формула типа 2n означает «Используйте свой Экспандотрон на мощности х2 в течение n секунд».

Работу Экспандотрона мы всегда начинаем с 1, чтобы посмотреть, как он меняет одну единицу. Если мы хотим посмотреть, что случится с 3 в Экспандотроне, мы просто масштабируем конечный результат. Например:

  • Начните с 1 и умножьте на двойку в третьей степени: 1*23 = 1 * 2 * 2 * 2 = 8

  • Начните с 3 и умножьте на двойку в третьей степени: 3*23 = 3 * 2 * 2 * 2 = 24

Каждый раз, когда вы видите простую степень, вы начинаете с 1.

Идём к пониманию масштабирующего множителя

При умножении мы можем просто указать конечный масштабирующий множитель. Хотите число в 8 раз больше? Умножаем на 8. Готово.

Степени более капризны в обращении. Вот как они работают:

Вы: Хочу вырастить вот это число.

Экспандотрон: Ок, давай его сюда.

Вы: И насколько большим оно станет?

Экспандотрон: Пффф, без понятия. Давай посмотрим.

Вы: Посмотрим? Я думал, ты зна...

Экспандотрон: Тихо! Оно растёт! Растёт!

Вы: ...

Экспандотрон: Готово! Это шедевр!

Вы: Я могу идти?

Экспандотрон не прямолинеен. Вы смотрите на него, но не знаете, что он сделает. Что значит 310? Степень числа вместо простого масштабирования заставляет нас почувствовать всеми органами процесс роста.

Это может звучать раздражающе неопределённо, но знаете, что? Большинство явлений природы заканчиваются неизвестно чем!

Как думаете, бактерия действительно планирует делиться каждые 14 часов? Нет, она просто питается забытым вами в холодильнике хлебом и растёт так быстро, как только может. Чтобы предсказать поведение этой бактерии, мы можем лишь использовать значения темпа её роста и длительности роста — и только потом мы получим конечное значение.

Иными словами, степень числа — это такой способ сказать «Начинаем с таких условий, изменяем их и смотрим, к чему мы придём». Этим и занимается наш Экспандотрон.

Идём к пониманию дробных степеней

Может ли Экспандотрон помочь нам осознать степени ещё глубже? Ну, к примеру, что означает 21,5?

Очень легко запутаться, если мы думаем о двойке в полуторной степени привычным способом — как о многократном умножении. Но в Экспандотроне всё просто: 1,5 — это всего лишь проведённое в нём время.

  • 21 — это одна секунда в машине (двукратный рост)
  • 22 — это две секунды в машине (четырёхкратный рост)

21,5 означает 1,5 секунды в машине, значит, этот рост окажется где-то между двукратным и четырёхкратным.

Умножение степеней

Что если мы захотим прогнать два цикла роста один за другим? Ну, например, мы используем машину в течение 2 секунд, а потом ещё 3 секунды на той же мощности:

x²*x³ = ?

Представьте самую обычную микроволновку. Разве это не будет самый обычный цикл длительностью в 5 секунд? Будет. Здесь происходит то же самое — раз уже мощность (основание) остаётся одинаковой, мы просто складываем время:

Квадратные корни

Продолжим. Предположим, мы выбрали мощность а и устанавливаем рост в течение 3 секунд:

Неплохо. Как будет выглядеть рост в течение половины этого времени? Логично, что 1,5 секунды.

А если мы проделаем то же самое два раза?

частичный рост * частичный рост = полный рост

Смотрим на это уравнение и видим, что «частичный рост» — это квадратный корень из значения полного роста. А если мы разделим время на три части?

частичный рост * частичный рост * частичный рост = полный рост

А вот и кубический корень! Это даёт нам интуитивное понимание того, почему деление степеней даёт нам корни: мы разбиваем время на равные доли.

 

Отрицательные степени

А как быть с отрицательными степенями? Отрицательные степени для нас будут значить обратный отсчёт во времени. Если движение вперёд во времени приводит нас к росту, движение назад, скорее всего, выльется в уменьшение числа.

Это значит следующее: «Секунду назад у нас была половина от текущего количества (1/21). Любой график экспоненциального роста строится именно так.

Выберите точку на шкале времени, например, 3,5 секунды (23,5 = 11,3). Через секунду мы удвоим наше количество (24,5 = 22,5). А секунду назад у нас была всего лишь половина от текущего количества (22,5 = 5,65).

Это работает с любым числом!

Приходим к нулевой степени

Теперь самое интересное: что означает 30? А всё очень просто. Мы устанавливаем нашу микроволновку на мощность х3 и используем её в течение... 0 секунд. Это значит, что мы её просто не запускаем!

Значит, масштабирующий множитель равен единице, значит, никаких изменений с нашим числом не происходит. Новое число будет равняться исходному числу, то есть (вы же помните, что исходное число у нас единица?) единице. Масштабирования не происходит.

Приходим к нулевому основанию

А что мы делаем с 0x? Что ж, наша мощность в этом случае будет х0, а значит, после секунды времени Экспандотрон превращает число в ноль. Раз мы уже аннулировали число, совершенно неважно, сколько времени оно пробудет в машине — оно так и останется нулём.

Приходим к нулевому основанию в нулевой степени

Вот он, великий и ужасный 00. И снова нас спасает Экспандотрон.

0 в степени 0 означает рост х0 в течение 0 секунд. Хоть мы и планировали аннулировать число, мы так и не запустили машину. Новое число равно исходному числу (то есть в наш Экспандотрон мы положили единицу), масштабирующий множитель тоже равен единице.

Примечание: Нужно учитывать, что допущение 00 = 1 необходимо для корректной работы многих теорем. В реальности 00 очень зависит от математического сценария и является спорным вопросом. Наша аналогия с микроволновкой не является достаточным ответом на вопрос, она просто помогает понять, почему 00может быть единицей.

Конечно, Экспандотрона на самом деле не существует (а жаль!). Конечно, числа на самом деле не выстраиваются в линейку — они всего лишь один из множества способов взглянуть на мир.

Что даёт нам Экспандотрон? Он помогает нам не запинаться о кажущиеся препятствия вроде 21,5 или 00. Как только мы начинаем понимать основные принципы роста, постепенно мы начнём дружить и с формулой Эйлера.

По материалам очаровательной статьи на Better Explained.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.
2 апреля 2015, 13:00

Оставайтесь в курсе


У вас есть интересная новость или материал из сферы образования или популярной науки?
Расскажите нам!
Присылайте материалы на hello@newtonew.com
--