Подготавливая материалы для нашего спецпроекта по ЕГЭ по информатике, я не удержался и скачал с сайта ФИПИ демо-версии по математике. Как многие из вас уже, наверное, слышали, школьники теперь могут сдавать два варианта ЕГЭ по математике: базовый и профильный. В общем-то, идея хорошая, ибо зачем, к примеру, гуманитарию знать интегралы и производные в совершенстве, или, скажем, высшую математику. Однако то, что я увидел, меня убило. И я бы хотел обратиться с восклицанием в сторону составителей: вы офигели. Я, конечно, понимаю, что уровень знаний наших школьников оставляет желать лучшего, но не настолько же.
Я хотел бы сразу договориться о следующем:
- Я не хочу обсуждать в данной статье, плохо ЕГЭ или хорошо. Это тема отдельного разговора.
- Статья имеет несколько разделов: вначале — комментарии к задачам по базовому и профильному уровням, а уже затем — выводы. Пожалуйста, дочитайте до конца.
- Отдельно хотелось бы попросить не обижаться учителей математики. Я уверен, что среди них есть много хороших, но к остальным у меня много «плохих» вопросов. Слишком много.
Давайте взглянем внимательнее на те задачи, которые предлагают решить после одиннадцати лет изучения математики в школе.
Базовый уровень
Для решения предлагается 20 задач. В прошлом году для получения удовлетворительной оценки было необходимо решить 7 задач. 7 задач, Карл! Но, может, эти задачи действительно хорошие и неочевидные? Давайте взглянем на них.
Начнём с задачи 1. Вычислить: \(\cfrac{2}{5}+\cfrac{1}{4}+2\)
Дроби, Карл, в ЕГЭ пришли дроби! Ну ладно, может, первая задача действительно проходная, совсем простенькая, для затравочки. Давайте возьмём что-нибудь из середины. Например, 6-ую задачу:
Баночка йогурта стоит 14 рублей 60 копеек. Какое наибольшее количество баночек йогурта можно купить на 100 рублей?
Высшая математика, Карл! Серьёзно, неужели для того, чтобы научиться складывать числа (что лично я умел делать в 3-4 года), нужно 11 лет изучать математику по 3 или больше часа в день? А я скажу так: если ребёнок доучился до 11-го класса и не может решить эту задачу, то у меня один простой вопрос к учителю, завучам и директору школы: ребята, вы что, совсем? Эту задачу обязан уметь решать каждый первоклассник. Ну, максимум, во втором классе. Тут нечему учить — тут просто нужно понимать, что такое рубли, что такое копейки и как складывать два числа.
Может, мы опять попали на «проходную» задачу? Давайте возьмём что-нибудь ещё. Например, задачу 11.

Задача 11 из демо-версии ЕГЭ по математике, базовый уровень
Источник: Официальный сайт ФИПИ
Беру свои слова назад. По сравнению с этой задачей прошлая — вершина математической мысли. Неужели нам нужно обучать детей одиннадцать лет математике, чтобы они могли ткнуть на графике в самую высокую точку в промежутке? Неужели недостаточно, блин, одного урока, чтобы объяснить это раз и навсегда всем детям? Как это можно не объяснить? Учителя, ответьте!
Вдумчивый читатель, наверное, скажет: там же есть задачи на проверку знания формул. Типа, ну хоть чему-то мы научили ребёнка, хоть запоминать формулы и воспроизводить их на память (хотя это, конечно, не дело и это — не задача математики). Действительно, в ЕГЭ присутствуют задачи, в которых нужно знать некоторые формулы, точнее, даже не формулы, а определения.
Приведу вариант задачи 5. Найти значение выражения: \(5^{\log_5 6+1}\)
И есть даже одна задача 7 на квадратное уравнение. Найти отрицательный корень уравнения \(x^2-x-6=0\).
Вот тут надо воскликнуть: так вот же где она, математика, в формулах. Спешу огорчить: дружелюбные составители все необходимые формулы вставили в инструкции:

Инструкция к демо-варианту ЕГЭ по математике, базовый уровень. Формулы.
Источник: Официальный сайт ФИПИ

Инструкция к демо-версии ЕГЭ 2016 по математике, базовый уровень. Формулы с логарифмами
Источник: Официальный сайт ФИПИ
То есть, вы поняли весь цимес задания? Мне не надо помнить формулы, мне не надо знать их, мне не надо помнить условия, мне не надо помнить и понимать определения. Мне просто надо уметь подставлять циферки вместо буковок. То, чему учится ребёнок за два часа с помощью приложения Dragonbox Algebra. Я бы предложил составителям добавить в самом начале ещё и таблицу с ответами, чтоб уж наверняка не было неуспевающих учеников!
В завершение я хочу, чтобы вы испытали настоящую гордость за наш уровень образования. Внимание, встречайте самую сложную задачу № 20:
Улитка за день заползает вверх по дереву на 3 м, а за ночь спускается на 2 м. Высота дерева 10м. Через сколько дней улитка впервые окажется на вершине дерева?
Где-то я это уже видел... Ах да, в книге Перельмана (или чём-то подобном) для детей 10-11 лет, в качестве простой тренировки мозга. Значит, вот так оценивает государство уровень современных непрофильных выпускников.
Ну что же, может, в профильном экзамене дела обстоят по-другому.
Профильный уровень
Первое отличие — тут уже нет формул в Инструкции. И на том спасибо. Начнём с первой проходной задачи:
Поезд отправился из Санкт-Петербурга в 23 часа 50 минут (время московское) и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути?
Что нужно знать и уметь для решения этой задачи? Логическое мышление? Умение мыслить аналитически? Знание методов решения задач? Или помнить сложные формулы? Нет, Карл, нет. Достаточно начать загибать пальцы: начали в 23 часа 50 минут, затем 00 часов 50 минут (загнули первый палец), затем 1 час 50 минут (второй палец) и т.п. Какой класс это должен уметь делать? Правильно, первый!
Возьмём задачку посложнее, №5. Найти x: \(3^{x-5}=81\)
Вы думаете, что для решения этой задачи нужно помнить формулы или логарифмы? Нет, достаточно просто вспомнить, в какой же это степени тройка даёт 81: в первой — 3, во второй — 9, в третьей — 27, в четвёртой — 81. Вот оно, четвёртая степень. Значит, x=9. Всё. И это — профильный уровень ЕГЭ 11 класса?
Или другой пример: в задаче 9 нужно найти значение синуса, если дано значение косинуса. Серьёзно, эти задачки должны щёлкать как орешки в церковно-приходской школе, а не решать на ЕГЭ.
Рассмотрим одну из последних задач повышенной сложности.
31 декабря 2013 г. Сергей взял в банке 9 930 000 рублей в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Сергей переводит в банк определённую сумму ежегодного платежа. Какова должна быть сумма ежегодного платежа, чтобы Сергей выплатил долг тремя равными ежегодными платежами?
До чего мы с вами дожили? Одна из сложнейших задач ЕГЭ — на решение линейного уравнения. Предлагаю читателю самостоятельно решить за пару минут эту задачу и восхититься её непревзойдённой сложностью. Решая её в первый раз, я даже перепроверил себя по ответу — не слишком ли всё просто, не ошибся ли я. Нет, не ошибся. И это печально.
Даже две последние задачи (18 и 19), которые должны быть самыми сложными, решаются за 10 и 5 минут соответственно (графически и путём обычных логических размышлений). Но эти задачи уже требуют простейшего навыка абстрактного мышления (действительно простейшего, никак сложных рассуждений от противного, цепочек силлогизмов, мега-замен и/или хитрых ходов).
Вопросы
В результате у меня возникло два глобальных вопроса:
Вопрос 1. Почему государство создаёт столь простые варианты ЕГЭ, следуя в угоду тренду хороших показателей? Какая ценность в том, что все сдадут ЕГЭ на уровне 2-3 класса церковно-приходской школы? Что они хотят проверить таким экзаменом?
Математика — это прежде всего обучение абстрактному мышлению, построению логических цепочек и рассуждений, умению формализовать различные процессы, навыку моделирования реальных физических, экономических и других задач. Это то, что мы хотим видеть на выходе. Чтобы, давая задачу программисту о вычислении расстояния маршрута, руководитель не добавлял в задачу ссылку на теорему Пифагора. Чтобы студент-химик мог сам сделать N%-ный раствор, без гугления и помощи старших друзей-товарищей. Чтобы потребитель мог оценить навскидку переплату по кредиту. Чтобы «прикидки в уме» были с точностью хотя бы до порядка. Чтобы экономист/студент финансового вуза мог посчитать с первого раза НДФЛ. Я готов мириться с тем, что в Инструкции добавляют формулы, ведь, в конце концов, в реальной жизни есть Интернет, где это можно подсмотреть. Но я не готов мириться с тем, чтобы государственная итоговая аттестация за 11 классов математики сводилась к подстановке чисел вместо букв.
Почему нельзя сказать: «Да, у нас системный кризис в образовании. Мы собираем через месяц 50 лучших педагогов страны, 50 лучших учителей в мире, 50 родителей, 50 детей, 50 работодателей, 50 преподавателей вузов, 50 чиновников и пр. Садимся и за две недели работы создаём план, устраивающий все стороны. С постепенным внедрением «от и до». И с чёткими, конкретными результатами. А затем будет максимальная политическая и экономическая воля для внедрения решений. Никаких отклонений, никаких отговорок, никаких задержек». Под таким подходом, как мне кажется, подпишутся практически все стороны, готовые к конструктивному диалогу.
Вопрос 2. Уважаемые учителя математики! Как так получилось, что ваши дети не сдают столь простой экзамен? Я всё понимаю, сам нахожусь по эту же сторону баррикад и готов понять, почему они не умеют вычислять пределы, считать сложные производные и интегралы, не умеют решать задачи на формулы условной вероятности и теорему Байеса. Но, уважаемые учителя:
- Как так случилось, что дети просто-напросто не умеют складывать дроби?
- Как так получилось, что существуют дети, не решающие квадратное уравнение с формулой-записанной-в-инструкции-сверху?
- Как так получилось, что умение посмотреть на график считается чем-то, к чему надо готовиться?
- Как так получилось, что вы жалуетесь на то, что детей требуется теперь готовить к ЕГЭ, при наличии задач, к которым не то, что готовиться не надо, а которые можно давать в качестве примеров отстающим детям, которые не могут решить задачи.
- Как так получилось, что теорема Пифагора стала задачей повышенной сложности?
Есть ещё много «как так получилось». И, знаете, сравнивая вклад государства и ваш в падение уровня математики, я бы сказал, что именно вы стали тем звеном, из-за которого государству приходится понижать уровень. Не было бы 25% не набравших минимальный балл, не было бы ЕГЭ церковно-приходского (базового) уровня. Скажите просто — КАК? Я, как учитель информатики, действительно не понимаю. Я учу детей информатике, и, вы не поверите, средняя задача по информатике в ЕГЭ на порядки сложнее задачи по математике. И, вы опять не поверите, они их решают. Все. Все те, кому я ставлю хотя бы 3.
Почему вам стало всё равно? Почему вы не хотите заставлять их понять хотя бы базу? Я всё понимаю: да, зарплаты низкие, да, нагрузка большая, да, много бумажек. Да, мир меняется, меняются поколения, меняется формат и форма. Меняются технологии, за которыми всё время приходится поспевать. Но проявите хоть какую-никакую ответственность. Хороший учитель сможет объяснить даже с мелом и доской. Начните учить. Или уходите.
По материалам:
- Демо-версии ЕГЭ 2016
fipi.ru